Руководства, Инструкции, Бланки

образцом почти чистой целлюлозы является img-1

образцом почти чистой целлюлозы является

Категория: Бланки/Образцы

Описание

Дисахариды - Студопедия

Дисахариды

Важнейшие дисахариды -- сахароза, мальтоза и лактоза. Все они являются изомерами и имеют формулу С12Н22О11, однако их строение различно

Сахароза C12 H22 O11 – дисахарид. Сахароза образована остатками a-глюкозы и b-фруктозы:

сахароза глюкоза фруктоза

2) Взаимодействие с гидроксидом кальция с образованием сахарата кальция.

3) Сахароза не реагирует с аммиачным раствором оксида серебра, поэтому ее называют невосстанавливающим дисахаридом.

Индусы еще за 300 лет до нашей эры умели получать тростниковый сахар из тростника. В наше время получают сахарозу из тростника, произр астающего в тропиках (на о.Куба и в других странах Центральной Америки).

В середине 18 века дисахарид был обнаружен и в сахарной свекле, а в середине 19 века был получен в производственных условиях.

В сахарной свекле содержится 12-15% сахарозы, по другим источникам 16-20% (сахарный тростник содержит 14-26% сахарозы).

Тростниковый сахар применяется в медицине для изготовления порошков, сиропов, микстур и т.д.

Свекловичный сахар широко применяется в пищевой промышленности, кулинарии, приготовлении вин, пива и т.д.

Из молока получают молочный сахар - лактозу. В молоке лактоза содержится в довольно значительном количестве: в коровьем молоке 4-5,5% лактозы, женское молоко содержит 5,5-8,4% лактозы.

Лактоза отличается от других сахаров отсутствием гидроскопичности - она не отсыревает. Это свойство имеет большое значение: если нужно приготовить с сахаром какой-либо порошок, содержащий легко гидролизующее лекарство, то берут молочный сахар. Если взять тростниковый или свекловичный сахар, то порошок быстро отсыреет и легко гидролизующее лекарственное вещество быстро разложится.

Значение лактозы очень велико, т.к. она является важным питательным веществом, особенно для растущих организмов человека и млекопитающихся животных.

Солодовый сахар - это промежуточный продукт при гидролизе крахмала. По другому его называют еще мальтоза, т.к. солодовый сахар получается из крахмала при действии солода (по лат. солод - maltum).

Солодовый сахар широко распространен как в растительных, так и в животных организмах. Например, он образуется под влиянием ферментов пищеварительного канала, а также при многих технологических процессах бродильной промышленности: винокурения, пивоварении и т.д.

Мальтоза С12 H22 O11 – дисахарид, образованный двумя остатками a-глюкозы.

Химические свойства аналогичны глюкозе, поэтому ее называют восстанавливающим дисахаридом. Молекула мальтозы состоит из двух остатков б -глюкозы в пиранозной форме, соединенных через 1-й и 4-й атомы углерода:

Лактоза состоит из остатков (3-галактозы и а-глюкозы в пиранозной форме, соединенных через 1-й и 4-й атомы углерода:

Все эти вещества представляют собой бесцветные кристаллы сладкого вкуса, хорошо растворимые в воде.

Химические свойства дисахаридов определяются их строением. При гидролизе дисахаридов в кислой среде или под действием ферментов связь между двумя циклами разрывается и образуются соответствующие моносахариды, например:

По отношению к окислителям дисахариды делят на два типа: восстанавливающие и невосстанавливающие. К первым относятся мальтоза и лактоза, которые реагируют с аммиачным раствором оксида серебра по упрощенному уравнению:

Эти дисахариды могут также восстанавливать гидроксид меди (II) до окс ида меди (I):

Восстановительные свойства мальтозы и лактозы обусловлены тем, что их циклические формы содержат гликозидный гидроксил (обозначен зве здочкой), и, следовательно, эти дисахариды могут переходить из циклической формы в альдегидную, которая и реагирует с Ag2O и Сu(ОН)2. В молекуле сахарозы нет гликозидного гидроксила, поэтому ее циклическая форма не может раскрываться и переходить в альдегидную форму. Сахароза -- невосстанавливающий дисахарид; она не реагирует с гидро-ксидом меди (II) и аммиачным раствором оксида серебра.

Распространение в природе. Наиболее распространенный дисахарид -- сахароза. Это химическое название обычного сахара, который получают экстракцией из сахарной свеклы или сахарного тростника. Сахароза -- главный источник углеводов в пище

человека. Лактоза содержится в молоке (от 2 до 8%) и получается из молочной сыворотки. Мальтоза содержится в проросших семенах хлебных злаков. Мальтоза также образуется при неполном гидролизе крахмала.

Полисахариды:Молекулы полисахаридов можно рассматривать как продукт п оликонденсации моносахаридов.Важнейшие из полисахаридов – это крахмал и целлюлоза (клетчатка). Они построены из остатков глюкозы. Общая формула этих полисахаридов (C6 H10 O5 )n

Крахмал (С6 H10 O5 )n – природный полимер, молекулы которого состоят из линейных и разветвленных цепей, содержащих остатки a-глюкозы.Крахмал - образуется в растениях при фотосинтезе и откладывается в виде "резервного" углевода в корнях, клубнях и семенах. Зерна риса, пшеницы, ржи и других злаков содержат 60-80% крахмала, клубни картофеля - 15-20%. Крахмальные зерна растений различаются по внешнему виду, что хорошо видно, когда их рассматриваешь под микроскопом.

Физические свойства : Внешний вид крахмала хорошо всем известен: это белое вещество, состоящее из мельчайших зерен, напоминающих муку, поэтому его второе название «картофельная мука». Крахмал не растворим в холодной воде, в горячей набухает и постепенно растворяется, образуя вязкий раствор (клейстер).При быстром нагревании крахмала происходит расщепление гигантской молекулы крахмала на мелкие молекулы полисахаридов, называемых декстринами. Декстрины имеют общую молекулярную формулу с крахмалом (С6 Н12 О5 )х, разница лишь в том, «х» в декстринах меньше «n» в крахмале.Пищеварительные соки содержат несколько разных ферментов, которые при низкой температуре доводят гидролиз крахмала до глюкозы:

Крахмал легко подвергается гидролизу: при нагревании в присутствии серной кислоты образуется глюкоза. (C6 H10 O5 )n (крахмал) + nH2 O –– H 2 SO 4 ,t ° ® nC6 H12 O6 (глюкоза)

2) Крахмал дает интенсивно синее окрашивание с йодом за счет образования внутрикомплексного соединения(качественная реакция).

3) Крахмал не вступает в реакцию «серебряного зеркала».

Применение: Ферментативный гидролиз (разложение путем брожения) крахмала имеет промышленное значение в производстве этилового спирта из зерна и картофеля. Процесс начинается с превращением крахмала в глюкозу, которую затем сбраживают. Используя специальные культуры дрожжей и изменяя условия, можно направить брожение и в сторону получения бутилового спирта, ацетона, молочной, лимонной и глюконовой кислот. Подвергая крахмал гидролизу кислотами, можно получить глюкозу в виде чистого кристаллического препарата или в виде патоки - окрашенного нескристаллизирующего сиропа. Наибольшее значение крахмал имеет в качестве пищевого продукта: в виде хлеба, картофеля, круп, являясь главным источником в нашем рационе питания. Кроме того, чистый крахмал применяется в пищевой промышленности в производстве кондитерских и кулинарных изделий, колбас. Значительное количество крахмала употребляется для проклеивания тканей, бумаги, картона, производства канцелярского клея. В аналитической химии крахмал служит индикатором в йодометрическом методе титрования. Для этих случаев лучше применять очищенную амилозу, т.к. ее растворы не загустевают, а образуемая с йодом окраска более интенсивна. В медицине и фармации крахмал применяется для приготовления присыпок, паст (густых мазей), а также при производстве таблеток. В животном мире роль «запасного крахмала» играет родственный крахмалу полисахарид - гликоген. Гликоген содержится во всех животных тканях. Особенно много его в печени (до 20%) и в мышцах (4%).

Целлюлоза (С6 H10 O5 )n природный полимер, молекулы которого состоят из линейных цепей, содержащих остатки b-глюкозы. Целлюлоза – многоатомный спирт, на элементную ячейку полимера приходятся три гидроксильных группы. В связи с этим, для целлюлозы характерны реакции этерификации (образование сложных эфиров). Наибольшее практическое значение имеют реакции с азотной кислотой и уксусным ангидридом.

Нахождение в природе:Целлюлоза, так же как и крахмал, образуется в растениях при реакции фотосинтеза. Она является основной составной частью оболочки растительных клеток; отсюда происходит ее название -- целлюлоза («целлула» -- клетка). Волокна хлопка -- это почти чистая целлюлоза (до 98%). Волокна льна и конопли тоже состоят главным образом из целлюлозы. В древесине ее содержится примерно 50%.

Получение: Образцом почти чистой целлюлозы является вата, полученная из очищенного хлопка. Основную массу целлюлозы выделяют из древесины, в которой она содержится вместе с другими веществами. Наиб олее распространенным методом получения целлюлозы в нашей стране является так называемый сульфитный. По этому методу измельченную древесину в присутствии раствора гидросульфита кальция Ca(HSO3)2 или «гидросульфита натрия NaHSO3 нагревают в автоклавах при давлении 0,5-- 0,6 МПа и температуре 150 "С. При этом все другие вещества разрушаются, а целлюлоза выделяется в сравнительно чистом виде. Ее промывают водой, сушат и направляют на дальнейшую переработку, большей частью на производство бумаги.

Физические свойства . Целлюлоза -- волокнистое вещество, нерастворимое ни в воде, ни в обычных органических растворителях. Растворителем ее является реактив Швейцера -- раствор гидроксида меди (II) с аммиаком, с которым она одновременно и взаимодействует.

2) Образование сложных эфиров с азотной и уксусной кислотами:

Другие статьи

Напишите формулу фотосинтеза? И расскажите о целлюлозе?

Напишите формулу фотосинтеза. И расскажите о целлюлозе?

аргынка с Алаколя Знаток (282), закрыт 6 лет назад

Вячеслав Мастер (1606) 8 лет назад

6CO2+6H2O=C6H12O6+6O2-Q еакция фотосинтеза!
Молекулярная формула целлюлозы (-C6H10O5-)n, как и у крахмала. Целлюлоза тоже является природным полимером. Ее макромалекула состоит из многих остатков молекул глюкозы. Может воэникнуть вопрос: почему крахмал и целлюлоза – вещества с одинаковой молекулярной формулой – обладают различными свойствами?
При рассмотрении синтетических полимеров мы уже выяснили, что их свойства зависят от числа элементарных звеньев и их структуры. Это же положение относится и к природным полимерам. Оказывается, степень полимеризации у целлюлозы намного больше, чем у крахмала. Кроме того, сравнивая структуры этих природных полимеров, установили, что макромолекулы целлюлозы, в отличие от крахмала, состоят из остатков молекулы (-глюкозы и имеют только линейное строение. Макромолекулы целлюлозы располагаются в одном направлении и образуют волокна (лен, хлопок, конопля) .
В каждом остатке молекулы глюкозы содержатся три гидроксильные группы.
Физические свойства.
Целлюлоза – волокнистое вещество. Она не плавится и не переходит в парообразное состояние: при нагревании примерно до 350оС целлюлоза разлагается – обугливается. Целлюлоза нерастворима ни в воде, ни в большинстве других неорганических и органических растворителях.
Неспособность целлюлозы растворяться в воде – неожиданное свойство для вещества, содержащего по три гидроксильные группы на каждые шесть атомов углерода. Хорошо известно, что полигидроксильные соединения легко растворяются в воде. Нерастворимость целлюлозы объясняется тем, что ее волокна представляют собой как бы «пучки» расположенных параллельно нитевидных молекул, связанных множеством водородных связей, которые образуются в результате взаимодействия гидроксильных групп. Внутрь подобного «пучка» растворитель проникнуть не может, а следовательно, не происходит и отрыва молекул друг от друга.
Растворителем целлюлозы является реактив Швейцера – раствор гидроксида меди (II) с аммиаком, с которым она одновременно и взаимодействует.
Концентрированные кислоты (серная, фосфорная) и концентрированный раствор хлорида цинка также растворяют целлюлозу, но при этом происходит ее частичный распад (гидролиз). сопровождающийся уменьшением молекулярной массы.
Получение.
Образцом почти чистой целлюлозой является вата, полученная из очищенного хлопка. Основную массу целлюлозы выделяют из древесины, в которой она содержится вместе с другими веществами. Наиболее распространенным методом получения целлюлозы в нашей стране является так называемый сульфитный. По этому методу измельченную древесину в присутствии раствора гидросульфита кальция Ca(HSO3)2 или гидросульфита натрия NaHSO3 нагревают в автоклавах при давлении 0,5–0,6 МПа и температуре 150о С. При этом все другие вещества разрушаются, а целлюлоза выделяется в сравнительно чистом виде. Ее промывают водой, сушат и направляют на дальнейшую переработку, большей частью на производство бумаги.
Применение.
Целлюлоза используется человеком с очень древних времен. Сначала применяли древесину как горючий и строительный материал; затем хлопковые, льняные и другие волокна стали использовать как текстильное сырье. Первые промышленные способы химической переработки древесины возникли в связи с развитием бумажной промышленности.
Бумага – это тонкий слой волокон клетчатки, спрессованных и проклеенных для создания механической прочности, гладкой поверхности, для предотвращения растекания чернил. Первоначально для изготовления бумаги употребляли растительное сырье, из которого чисто механически можно было получить необходимые волокна, стебли риса (так называемая рисовая бумага). хлопка, использовали также изношенные ткани. Однако по мере развития книгопечатания перечисленных источников сырья стало не хватать для удовлетворения растущей потребности бумаги. Особенно много бумаги расходуется для печатания газет, причем вопрос о качестве (белизне, прочности, долговечности) для газетной бумаги значения не имеет. Зная, ч

Светик Профи (802) 8 лет назад

общая реакция фотсинтеза 12H2O + 6CO2=C6H12O6+6H2O Целлюлоза состоит из остатков молекул глюкозы, которая и образуется при кислотном гидролизе целлюлозы:
(C6H10O5)n + nH2O -> nC6H12O6

Серная кислота и йод, благодаря гидролизу, окрашивают целлюлозу в синий цвет. Один же йод — только в коричневый. Кроме целлюлозы, в состав клеточных оболочек входят еще несколько других углеводов, известных под общим именем гемицеллюлоз, извлекаемых из клеточных оболочек 1%-м раствором соляной или серной кислоты при нагревании.

Один из относящихся сюда углеводов — парагалактан, дающий при гидролизе галактозу. В клеточных оболочках имеются еще и другие гемицеллюлозы, дающие маннозу, арабинозу и ксилозу.

С возрастом многие клеточные оболочки перестают давать реакцию на целлюлозу, потому что одни подвергаются одревеснению, другие — опробковению и т. д.

Почти чистой клетчаткой является хлопок, который идет на изготовление ткани. Целлюлоза древесины дает бумагу. Целлюлозу и ее эфиры используют для получения искусственного волокна (вискозный, ацетатный, медно-аммиачный шёлк, искусственная шерсть). пластмасс, кино и фотоплёнок, лаков, бездымного пороха и т. д.

Целлюлоза - стойкое вещество, не разрушается при нагревании до 200 C. Не расстворима в воде и слабых кислотах. Обладает прочностью, но эластична. Зарегистрирована в качестве пищевой добавки E460.

Промышленным методом целлюлозу получают методом варки на целлюлозных заводах входящих в промышленные комплексы (комбинаты).

Ирина Костерина Профи (628) 8 лет назад

химический баланс фотосинтеза может быть представлен в виде простого уравнения:

6CO2 + 6H2O = C6H12O6 + 6O2

Целлюлоза состоит из остатков молекул глюкозы, которая и образуется при кислотном гидролизе целлюлозы:

(C6H10O5)n + nH2O -> nC6H12O6
Серная кислота и йод, благодаря гидролизу, окрашивают целлюлозу в синий цвет. Один же йод — только в коричневый. Кроме целлюлозы, в состав клеточных оболочек входят еще несколько других углеводов, известных под общим именем гемицеллюлоз, извлекаемых из клеточных оболочек 1%-м раствором соляной или серной кислоты при нагревании.

Один из относящихся сюда углеводов — парагалактан, дающий при гидролизе галактозу. В клеточных оболочках имеются еще и другие гемицеллюлозы, дающие маннозу, арабинозу и ксилозу.

С возрастом многие клеточные оболочки перестают давать реакцию на целлюлозу, потому что одни подвергаются одревеснению, другие — опробковению и т. д.

Почти чистой клетчаткой является хлопок, который идет на изготовление ткани. Целлюлоза древесины дает бумагу. Целлюлозу и ее эфиры используют для получения искусственного волокна (вискозный, ацетатный, медно-аммиачный шёлк, искусственная шерсть). пластмасс, кино и фотоплёнок, лаков, бездымного пороха и т. д.

Целлюлоза - стойкое вещество, не разрушается при нагревании до 200 C. Не расстворима в воде и слабых кислотах. Обладает прочностью, но эластична. Зарегистрирована в качестве пищевой добавки E460.

Илья К Гуру (3333) 8 лет назад

Суммарная реакция фотосинтеза: 6CO2+ 6H2O= (свет, хлорофилл) С6Н12О6 + 6О2

Целлюлоза или клетчатка (С6Н7О2(ОН) 3)n
полисахарид, главная составная часть клеточной стенки растений.
Способы получения:
сульфатная варка (водный раствор NaOH+Na2S)
сульфитная варка
1,52-1,54 г/см3
не растворяется в воде и органических растворителях
Макромолекулы-линейные неразветвленные цепи из Dглюкозы, соединенных 1,4 бета-гликозидными связями
Изготавляют бумагу, картон, волокна, пленки.

lizard lizard Ученик (110) 8 лет назад

Salam! Nu vot nawolsya znatok (Svetik) Spasibo ey. A vi sama ne znali ili iwete kolleg?

РЕФЕРАТ на тему Углеводы БДТ 13(9)1

/ РЕФЕРАТ на тему Углеводы БДТ 13(9)1

Ежедневно сталкиваясь с множеством бытовых предметов, продуктов питания, природных объектов, продуктов промышленного производства, мы не задумываемся о том, что все вокруг есть и индивидуальные химические вещества или совокупность этих веществ. Любое вещество обладает собственной структурой и свойствами. Человек с момента своего появления на Земле употреблял растительную пищу, содержащую крахмал, фрукты и овощи, содержащие глюкозу, сахарозу и другие углеводы, использовал для своих нужд древесину и другие растительные объекты, состоящие главным образом из другого природного полисахарида — целлюлозы. И только в начале XIX в. стало возможным изучение химического состава природных высокомолекулярных веществ, строения их молекул. В этой области были сделаны важнейшие открытия.

В бескрайнем мире органических веществ есть соединения, о которых можно сказать, что они состоят из углерода и воды. Они так и называются – углеводы. Впервые термин “углеводы” предложил русский химик из Дерпта (ныне Тарту) К. Шмидт в 1844 году. В 1811 году русский химик Константин Готлиб Сигизмунд (1764-1833) впервые получил глюкозу гидролизом крахмала. Углеводы широко распространены в природе и играют большую роль в биологических процессах живых организмов и человека.

Углеводы в зависимости от строения можно подразделить на моносахариды, дисахариды и полисахариды: ( см. приложение 1)

Из шестиуглеродных моносахаридов – гексоз – наиболее важное значение имеют глюкоза, фруктоза и галактоза.

Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом.

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами.

В молекулах моносахоридов может содержаться от 4-х до 10-ти атомов углерода. Названия всех групп моносахаридов, а также названия отдельных представителей оканчиваются на –оза. Поэтому в зависимости о числа атомов углерода в молекуле моносахариды подразделяют на тетрозы, пентозы, гексозы и т.д. наибольшее значение имеют гексозы и пентозы.

Животные и человек не способны синтезировать сахара и получают их с различными пищевыми продуктами растительного происхождения.

В растениях углеводы образуются из двуокиси углерода и воды в процессе сложной реакции фотосинтеза, осуществляемой за счет солнечной энергии с участием зелёного пигмента растений - хлорофилла.

Из шестиуглеродных моносахаридов – гексоз – важное значение имеют глюкоза, фруктоза и галактоза.

Основные понятия. Строение молекулы.

Для установления структурной формулы молекулы глюкозы необходимо знать её химические свойства. Экспериментально доказали, что один моль глюкозы реагирует с пятью молями уксусной кислоты с образованием сложного эфира. Это означает, что в молекуле глюкозы имеется пять гидроксильных групп. Так как глюкоза в аммиачном растворе оксида серебра (II) дает реакцию «серебрянного зеркала», то в её молекуле должна быть альдегидная группа.

Опытным путем так же одказали, что глюкоза имеет неразветвленную углеродную цепь. На основании этих данных строение молекулы глюкозы можно выразить следующей формулой:

Как видно из формулы, глюкоза является одновременно многоатомным спиртом а альдегидом, т.е альдегидоспиртом.

Дальнейшие исследование показали, что кроме молекул с открытой цепью, для глюкозы характерны молекулы циклического строения. Это объясняется тем, что молекулы глюкозы, вследствие вращения атомов углерода вокруг связей могут принимать изогнутую форму и гидроксильная группа 5 углерода может приблизиться к гидроксильной группе. В последней под действием гидроксильной группы разрывается ?-связь. К свободной связи присоединяется атом водорода, и образуется шестичленное кольцо, в котором альдегидная группа отсутствует. Доказано, что в водном растворе существуют обе формы молекул глюкозы – альдегидная и циклическая, между которыми устанавливается химическое равновесие:

В молекулах глюкозы с открытой цепью альдегидная группа может свободно вращаться вокруг ?-связи, которая находится между первым и вторым атомами углерода. В молекулах циклической формы такое вращение не возможно. По этой причине циклическая форма молекулы может иметь различное пространственное строение:

?-форма глюкозы - гидроксильные группы (-ОН) при первом и втором атомах углерода расположены по одну сторону кольца.

б - форма глюкозы - гидроксильные группы находятся по разные стороны кольца молекулы.

Глюкоза - бесцветное кристаллическое вещество со сладким вкусом, хорошо растворимое в воде. Из водного раствора кристаллизуется. По сравнению со свекловичным сахаром менее сладкая.

Глюкоза обладает химическими свойствами, характерными для спиртов (гидроксильная (-ОН) группа) и альдегидов ( группа альдегида (-СНО). Кроме того, она обладает и некоторыми специфическими свойствами.

1. Свойства, характерные для спиртов:

а) взаимодействие с оксидом меди (II):

C6H12O6 + Cu(OH)2 > C6H10O6Cu + H2O

алкоголят меди (II)

б) взаимодействие с карбоновыми кислотами с образованием сложных эфиров (реакция этерификации).

2. Свойства, характерные для альдегидов

а) взаимодействие с оксидом серебра ( I ) в аммиачном растворе (реакция "серебряного зеркала"):

C6H12O6 + Аg2O > C6H12O7 +2Agv

глюкоза глюконовая кислота

б)восстановление (гидрирование) - до шестиатомного спирта (сорбита):

C6H12O6 + H2 > C6H14O6

3. Специфические реакции - брожение:

а) спиртовое брожение (под действием дрожжей):

С6Н12О6 > 2С2Н5ОН + 2СО2

глюкоза этиловый спирт

б) молочнокислые брожение (под действие молочнокислых бактерий):

глюкоза молочная кислота

в) маслянокислое брожение:

С6Н12О6 > С3Н7СООН +2Н2 +2СО2

глюкоза масляная кислота

Первый синтез простейших углеводов из формальдегида в присутствии гидроксида кальция был произведен А.М.Бутлеровым в 1861 году:

На производстве глюкозу чаще всего получают гидролизом крахмала в присутствии серной кислоты:

(С6Н10О5)n + nН2О > nC6H12O6

Глюкоза является ценным питательным продуктом. В организме она подвергается сложным биохимическим превращениям, в результате которых освобождается энергия, которая накопилась в процессе фотосинтеза. Упрощено процесс окисления глюкозы в организме можно выразить следующим уравнением:

Так как глюкоза легко усваивается организмом, ее используют в медицине в качестве укрепляющего лечебного средства. Широко применяют глюкозу в кондитерском деле (изготовление мармелада, карамели, пряников).

Большое значение имеют процессы брожения глюкозы. Так, например, при квашении капусты, огурцов, молока происходит молочнокислое брожение глюкозы, так же, как при силосований кормов. Если подвергаемая силосованию масса недостаточно уплотнена, то под влиянием проникшего воздуха происходит маслянокислое брожение и корм становится непригоден к применению.

На практике используется также спиртовое брожение глюкозы, например при производстве пива.

Нахождение в природе и организме человека.

В организме человека глюкоза содержится в мышцах, в крови и в небольших количествах во всех клетках. Много глюкозы находится во фруктах, ягодах, нектаре цветов, особенно много в винограде.

В природе глюкоза образуется в растениях в результате фотосинтеза в присутствии зелёного вещества - хлорофилла, содержащего атом магния. В свободном виде глюкоза содержится почти во всех органах зеленых растений. Особенно ее много в соке винограда, поэтому глюкозу иногда называют виноградным сахаром. Мед в основном состоит из смеси глюкозы с фруктозой.

Дисахариды - кристаллические углеводы, молекулы которых построены из соединённых между собой остатков двух молекул моносахаридов.

Простейшими представителями дисахаридов являются обычный свекловичный или тростниковый сахар - сахароза, солодовый сахар - мальтоза, молочный сахар - лактоза и целлобиоза. Все эти дисахариды имеют одну и туже формулу С12Н22О11.

Основные понятия. Строение молекулы

Опытным путем доказано, что молекулярная формула сахарозы C12H22O11. При исследовании химических свойств сахарозы можно убедиться, что для нее характерна реакция многоатомных спиртов: при взаимодействии с гидроксидом меди (II) образуется ярко-синий раствор. Реакцию «серебряного зеркала» с сахарозой осуществить не удается. Следовательно, в ее молекуле имеются гидроксильные группы, но нет альдегидной.

Но если раствор сахарозы нагреть в присутствии соляной или серной кислоты, то образуются два вещества, одно из которых, подобно альдегидам, реагирует как с аммиачным раствором оксида серебра (I), так и с гидроксидом меди (II). Эта реакция доказывает, что в присутствии минеральных кислот сахароза подвергается гидролизу и в результате образуются глюкоза и фруктоза. Так подтверждается, что молекулы сахарозы состоят из взаимно связанных остатков молекул глюкозы и фруктозы.

Чистая сахароза — бесцветное кристаллическое вещество сладкого вкуса, хорошо растворимое в воде.

Главным свойством дисахаридов, отличающим их от моносахаридов, является способность к гидролизу в кислой среде (или под действием ферментов в организме):

С12Н22О11+Н2О> С6Н12О6+ С6Н12О6

сахароза глюкоза фруктоза

Образовавшуюся в процессе гидролиза глюкозу можно обнаружить реакцией «серебряного зеркала» или при взаимодействии ее с гидроксидом меди (II).

Сахарозу C12H22O11 (сахар) получают в основном из сахарной свеклы и сахарного тростника. При производстве сахарозы не происходят химические превращения, ибо она уже имеется в природных продуктах. Ее лишь выделяют из этих продуктов по возможности в более чистом виде.

Процесс выделения сахарозы из сахарной свеклы:

Очищенную сахарную свеклу в механических свеклорезках превращают в тонкую стружку и помещают ее вспециальные сосуды — диффузоры, через которые пропускают горячую воду. В результате из свеклы вымывается почти вся сахароза, но вместе с ней в раствор переходят различные кислоты, белки и красящие вещества, которые требуется отделить от сахарозы.

Образовавшийся в диффузорах раствор обрабатывают известковым молоком.

Гидроксид кальция реагирует с содержащимися в растворе кислотами. Так как кальциевые соли большинства органических кислот малорастворимы, то они выпадают в осадок. Сахароза же с гидроксидом кальция образует растворимый сахарат типа алкоголятов - С12Н22О11•2CaO•H2O

3. Чтобы разложить образовавшийся сахарат кальция и нейтрализовать избыток гидроксида кальция, через их раствор пропускают оксид углерода (IV). В результате кальций осаждается в виде карбоната:

С12Н22О11•2CaO•H2O + 2СО2 > С12Н22О11 + 2CaСO3v 2Н2О

4. Полученный после осаждения карбоната кальция раствор фильтруют, затем упаривают в вакуумных аппаратах и кристаллики сахара отделяют центрифугированием.

Однако выделить весь сахар из раствора не удается. Остается бурый раствор (меласса), который содержит еще до 50% сахарозы. Мелассу используют для получения лимонной кислоты и некоторых других продуктов.

5. Выделенный сахарный песок обычно имеет желтоватый цвет, так как содержит красящие вещества. Чтобы их отделить, сахарозу вновь растворяют в воде и полученный раствор пропускают через активированный уголь. Затем раствор снова упаривают и подвергают кристаллизации. ( см. приложение 2)

Сахароза в основном используется в качестве продукта питания и в кондитерской промышленности. Путем гидролиза из нее получают искусственный мед.

Нахождение в природе и организме человека.

Сахароза входит в состав сока сахарной свеклы (16 — 20%) и сахарного тростника (14 — 26%). В небольших количествах она содержится вместе с глюкозой в плодах и листьях многих зеленых растений.

Некоторые углеводы представляют собой природные полимеры, состоящие из многих сотен и даже тысяч моносахаридных звеньев, входящих в состав одной макромолекулы. Поэтому такие вещества получили название полисахариды. Наиболее важными среди полисахаридов являются крахмал и целлюлоза. Оба они образуются в растительных клетках из глюкозы, основного продукта процесса фотосинтеза.

Основные понятия. Строение молекулы.

Экспериментально доказано, что химическая формула крахмала (C6H10O5)n, где п достигает нескольких тысяч. Крахмал является природным полимером, молекулы которого состоят из отдельных звеньев C6H10O5. Так как при гидролизе крахмала образуется только глюкоза, то можно сделать вывод, что эти звенья являются остатками молекул ?-глюкозы.

Ученым удалось доказать, что макромолекулы крахмала состоят из остатков молекул циклической глюкозы. Процесс образования крахмала можно представить так:

Кроме того, установлено, что крахмал состоит не только из линейных молекул, но и из молекул разветвленной структуры. Этим объясняется зернистое строение крахмала.

Крахмал — белый порошок, нерастворимый в холодной воде. В горячей воде он набухает и образует клейстер. В отличие от моно- и олигосахаридов полисахариды не обладают сладким вкусом.

Качественная реакция на крахмал.

Характерной реакцией крахмала является его взаимодействие с йодом. Если к охлажденному крахмальному клейстеру добавить раствор йода, то появляется синее окрашивание. При нагревании клейстера оно исчезает, а при охлаждении появляется вновь. Этим свойством пользуются при определении крахмала в пищевых продуктах. Так, например, если каплю йода поместить на срез картофеля или ломтик белого хлеба, то появляется синее окрашивание.

(С6Н6О5)n + nH2O > nC6H12O6

В промышленности крахмал получают в основном из картофеля, риса или кукурузы.

Крахмал является ценным питательным продуктом. Чтобы облегчить его усвоение, содержащие крахмал продукты подвергают действию высокой температуры, т. е. картофель варят, хлеб пекут. В этих условиях происходит частичный гидролиз крахмала и образуются декстрины, растворимые в воде. Декстрины в пищеварительном тракте подвергаются дальнейшему гидролизу до глюкозы, которая усваивается организмом. Избыток глюкозы превращается в гликоген (животный крахмал). Состав гликогена такой же, как у крахмала, но его молекулы более разветвленные. Особенно много гликогена содержится в печени (до 10%). В организме гликоген является резервным веществом, которое превращается в глюкозу по мере ее расходования в клетках.

В промышленности крахмал путем гидролиза превращают в патоку и глюкозу. Для этого его нагревают с разбавленной серной кислотой, избыток которой затем нейтрализуют мелом. Образовавшийся осадок сульфата кальция отфильтровывают, раствор упаривают и выделяют глюкозу. Если гидролиз крахмала не доводить до конца, то образуется смесь декстринов с глюкозой — патока, которую применяют в кондитерской промышленности. Получаемые из крахмала декстрины используются в качестве клея, для загустения красок при нанесении рисунков на ткань.

Крахмал применяется для накрахмаливания белья. Под горячим утюгом происходит частичный гидролиз крахмала и превращение его в декстрины. Последние образуют на ткани плотную пленку, которая придает блеск ткани и предохраняет ее от загрязнения.

Нахождение в природе и организме человека.

Крахмал, являясь одним из продуктов фотосинтеза, широко распространен в природе. Для различных растений он является запасным питательным материалом и содержится главным образом в плодах, семенах и клубнях. Наиболее богато крахмалом зерно злаковых растений: риса (до 86%), пшеницы (до 75%), кукурузы (до 72%), а также клубни картофеля (до 24%). В клубнях крахмальные зерна плавают в клеточном соке, поэтому картофель является основным сырьем для получения крахмала. В злаках частицы крахмала плотно склеены белковым веществом клейковиной.

Для организма человека крахмал наряду с сахарозой служит основным поставщиком углеводов — одного из важнейших компонентов пищи. Под действием ферментов крахмал гидролизуется до глюкозы, которая окисляется в клетках до углекислого газа и воды с выделением энергии, необходимой для функционирования живого организма. Из продуктов питания наибольшее количество крахмала содержится в хлебе, макаронных и других мучных изделиях, крупах, картофеле.

Вторым наиболее распространенным в природе полисахаридом является целлюлоза или клетчатка (см. приложение 4).

Основные понятия. Строение молекулы.

Формула целлюлозы, как и крахмала - (С6Н10О5)n, элементарным звеном этого природного полимера также служат остатки глюкозы. Степень полимеризации у целлюлозы намного больше, чем у крахмала.

Макромолекулы целлюлозы, в отличие от крахмала, состоят из остатков молекул б-глюкозы и имеют только линейное строение. Макромолекулы целлюлозы располагаются в одном направлении и образуют волокна (лен, хлопок, конопля).

Чистая целлюлоза — твердое белое вещество, имеющее волокнистую структуру. Она нерастворима в воде и органических растворителях, но хорошо растворяется в аммиачном растворе гидроксида меди (II). Как известно, сладкого вкуса целлюлоза не имеет.

Горение. Целлюлоза легко горит с образованием углекислого газа и воды.

(С6Н10О5)n + 6nО2 > nСО2 + nН2О + Q

Гидролиз. В отличие от крахмала клетчатка гидролизуется с трудом. Только очень длительное кипячение в водных растворах сильных кислот приводит к заметному расщеплению макромолекулы до глюкозы:

(С6Н10О5)n + nH2O > nC6H12O6

Образования сложных эфиров. Каждое элементарное звено молекулы целлюлозы имеет три гидроксильные группы, которые могут участвовать в образовании сложных эфиров как с органическими, и с неорганическими кислотами.

Нитраты целлюлозы. При обработке целлюлозы смесью концентрированных азотной и серной кислот (нитрующая смесь) образуются нитраты целлюлозы. В зависимости от условий проведении реакции и соотношения реагирующих веществ можно получить продукт по двум (динитрат) или трем (тринитрат) гидроксильным группам

Образцом почти чистой целлюлозы является вата, полученная из очищенного хлопка. Основную массу целлюлозы выделяют из древесины, в которой она содержится вместе с другими веществами. Наиболее распространенным методом получения целлюлозы в нашей стране является так называемый сульфитным. По этому методу, измельченную древесину в присутствии раствора гидросульфита кальция или гидросульфита натрия нагревают в автоклавах при давлении 0,5-0,6 МПа и температуре 150 °С. При этом все другие вещества разрушаются, а целлюлоза выделяется в сравнительно чистом виде. Ее промывают водой, сушат и направляют на дальнейшую переработку, большей частью на производство бумаги.

Целлюлоза используется человеком с очень древних времен. Ее применение весьма разнообразно. Из целлюлозы изготавливают многочисленные искусственные волокна, полимерные пленки, пластмассы, бездымный порох, лаки. Большое количество целлюлозы идет на производство бумаги. Большое значение имеют продукты этерификации целлюлозы. Так, например, из ацетилцеллюлозы получают ацетатный шелк. Для этого триацетилцеллюлозу растворяют в смеси дихлорметана и этанола. Образовавшийся вязкий раствор продавливают через фильеры — металлические колпачки с многочисленными отверстиями. Тонкие струи раствора опускаются в шахту, через которую противотоком проходит нагретый воздух. В результате растворитель испаряется и триацетилцеллюлоза выделяется в виде длинных нитей, из которых прядением изготовляют ацетатный шелк .Ацетилцеллюлоза идет также на производство негорючей пленки и органического стекла, пропускающего ультрафиолетовые лучи.

Тринитроцеллюлоза (пироксилин) используется как взрывчатое вещество и для производства бездымного пороха. Для этого тринитроцеллюлозу растворяют в этил-ацетате или в ацетоне. После испарения растворителей компактную массу размельчают и получают бездымный порох. Исторически это был первый полимер, из которого была изготовлена промышленная пластмасса — целлулоид. Ранее пироксилин использовался для изготовления кино- и фотопленки и лаков. Его главный недостаток — легкая горючесть с образованием токсичных оксидов азота.

Динитроцеллюлоза (коллоксилин) применяется также для получения коллодия. В этих целях ее растворяют в смеси спирта и эфира. После испарения растворителей образуется плотная пленка — коллодий, применяемый в медицине. Динитроцеллюлоза идет также на производство пластмассы целлулоида. Его получают путем сплавления ди-нитроцеллюлозы с камфорой.

Нахождение в природе и организме человека.

Целлюлоза является основной частью стенок растений. Относительно чистой целлюлозой являются волокна хлопчатника, джута и конопли. Древесина содержит от 40 до 50% целлюлозы, солома — 30%. Целлюлоза растений служит питательным веществом для травоядных животных, в организме которых имеются расщепляющие клетчатку ферменты. Целлюлоза, так же как и крахмал, образуется в растениях при реакции фотосинтеза. Она является основной составной частью оболочки растительных клеток; отсюда происходит ее название —- целлюлоза («целлула» — клетка). Волокна хлопка — это почти чистая целлюлоза (до 98%). Волокна льна и конопли тоже состоят главным образом из целлюлозы. В древесине ее содержится примерно 50%.

Биологическое значение углеводов очень велико:

Углеводы выполняют пластическую функцию, то есть участвуют в построении костей, клеток, ферментов. Они составляют 2-3 % от веса.

Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов.

Углеводы являются основным энергетическим материалом (см. ). При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 воды. Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

В крови содержится (0,1-0,12%) глюкозы. От концентрации глюкозы зависит осмотическое давление крови.

Пентоза (рибоза и дезоксирибоза) участвуют в постоении АТФ.

В суточном рационе человека и животных преобладают углеводы. Животные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Ежедневная потребность человека в сахарах составляет около 500 граммов, но она пополняется в основном за счет крахмала, содержащегося в хлебе, картофеле, макаронных изделиях. При рациональном питании суточная доза сахарозы не должна превышать 75 граммов (12 – 14 стандартных кусочков сахара, включая тот, что расходуется на приготовление пищи).

Кроме того, углеводы играют значительную роль в современной промышленности – технологии и продукты, в которых используются углеводы, не загрязняют окружающей среды, не приносят ей ущерба.

История открытия и производства сахара из свёклы.

Родиной сахарного тростника считается Индия (слово «сахар» тоже «родом» из Индии: «сакхара» на языке одного из древних народов полуострова означало сначала просто «песок», а затем – «сахарный песок»). Из Индии это растение было вывезено в Египет и Персию; оттуда через Венецию сахар поступал в европейские страны. Долгое время он стоил очень дорого и считался роскошью.

Культивировалась свекла с давних времен. В древних Ассирии и Вавилоне свекла выращивалась уже за 1,5 тыс. лет до н.э. Окультуренные формы свеклы известны на Ближнем Востоке с VIII-VI вв. до н.э. А в Египте свекла служила главной пищей рабов. Так, из диких форм свеклы, благодаря соответствующей селекции, постепенно были созданы сорта кормовой, столовой и белой свеклы. Из белых сортов столовой свеклы были выведены первые сорта сахарной свеклы.

Появление нового альтернативного тростнику, сахароноса историки науки связывают с эпохальным открытием немецкого ученого-химика, члена Прусской академии наук А. С. Маргграфа (1705-1782). В докладе на заседании Берлинской академии наук в 1747 г. он изложил результаты опытов по получению кристаллического сахара из свеклы.

Полученный сахар, как утверждал Маргграф, по своим вкусовым качествам не уступал тростниковому. Однако Маргграф не видел широких перспектив практического применения своего открытия.

Дальше в исследовании и изучении данного открытия пошел ученик Маргграфа - Ф. К. Ахард (1753-1821). Он с 1784 года активно взялся за усовершенствование, дальнейшую разработку и внедрение в практику открытия своего учителя.

Ахард прекрасно понимал, что одним из важнейших условий успеха нового, весьма перспективного дела, является улучшение сырья-свеклы, т.е. повышение ее сахаристости. Уже в 1799 году труды Ахарда увенчались успехом. Появилась новая ветвь культурной свеклы – сахарная. В 1801 году в своем имении в Кюцерне (Силезия) Ахард построил один из первых сахарных заводов в Европе, на котором освоил получение сахара из свеклы.

Комиссия, направленная Парижской академией наук, провела обследование ахардовского завода и пришла к выводу, что выработка сахара из свеклы нерентабельна.